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LETTER TO THE EDITOR 

A statistical model of an evolving population with 
sexual reproduction 
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Abrtnet. We introduce B statistical model of a population with a sexual reprodunion 
mechanism, evolving in a flat fitness landscape. We show that fluctuations in the genetic 
overlap between different individuals in the population vanish in the infinite-population 
limit, contrary to the case of asexual reproduction, which exhibited spin-glass-like 
behaviour. 

A statistical model of a population evolving in the absence of natural selection (or, if 
one uses the useful metaphor of Sewall Wright, in a flat fitness landscape) has been 
recently introduced and solved (Demda and Peliti 1990, hereafter denoted by DP) by 
exploiting the analogy with a dynamical model with stochastic dynamics: the annealed 
random map modei (Demda and Bessis i988). One of the most interesting ieatures 
of the solution was its analogy with spin glasses (for a review, see MCzard et a1 1987). 
The distribution of the population in genetic space could be described by a quantity 
analogous to the overlap distribution in spin glasses P ( q ) .  It  turned out that this 
quantity exhibited fluctuations even in a suitably defined infinite-population limit. One 
could therefore speak of two averages: the population average is the analogue of the 
thermai average in disordered sysiems, wvhiie ihe process overage, i.e. ihe average over 
all possible realizations of the reproduction process (conveniently represented in the 
simulations by a time average), is the analogue of the average over disorder. 

We consider in this letter a model similar to the one just discussed, except that the 
reproduction mechanism is analogous to sexual reproduction. We have exploited the 
privilege of defining the model in order to keep its average properties as similar as 
possible to that one, in such a way as to facilitate comparison. Our main result is that 
the genetic distance between different individuals does notflueluate in the infinite-popula- 
tion limit. In  such a way most of the analogy with disordered systems appears to be 
irrelevant in sexually reproducing populations evolving in a flat fitness landscape. 
Since natural selection (or a non-trivial fitness landscape) has in general the tendency 
to reduce fluctuations, it is expected that fluctuations of average properties of a sexually 

one (for an accessible reference on evolutionary genetics, see'Maynard Smith (1989)). 

-----A..-:-- ---..t".:-- -1.-..14 hn --+ha- .-.lln. 11.0- Fnr Q- ~ c a ~ . , ~ l l . ,  m-..-4...41n rr;y.uuucr,,g y"yu1a,1Y" DIIUU." "r . a L . l r l  "...'.,.*. ..a U.. .U. U.. '.""U'..., .y,.""Y'.l.(I 



L706 Letter to the Editor 

We consider a population formed by a fixed number, M, of individuals, the genetic 
structure of which is identified by the state of N binary units, U: = 51, i = 1,. . . , N, 
a = 1,. . . , M. The population evolves by the combined effects of reproduction and 
mutation, but in the absence of natural selection: i.e. we assume that the probability 
of reproductive success of an individual is independent of its genetic structure. 

We define two models, distinguished by the reproduction mechanism. The model 
with asexual reproduction, introduced and solved by DP, will be denoted as model A, 
the model with sexual reproduction, whose discussion is the subject of this letter, will 
be denoted as modei E. 

In model A, given the population at some generation t, the following generation 
t + 1 is obtained as follows: for each individual a one chooses at random, independently 
for each individual and with uniform probability, the parent p = G,(a)  E (1,. . . , M}. 
The generic structure of the new individual a is then identical to that of its parent, 
up to mutations, which occur with probability ~r. dt  in the short time interval dt. One 
has i‘nerefore, for each unii i = i ,  . . , , IY in ihe genome: 

(1) 
with probability ;( 1 +e-*”) 
with probability ;(1 -e-’*). 

U:( t +  1) = 

In model B, at each generation and for each individual a, one chooses independently 
and with uniform probability two parents, a’= G!”(a) and a” = G!*’(a), where a’# a”. 
For each unit i and each individual U, one then chooses with equal probability one 
of the two parents, and the state of the unit is equal to that of the corresponding 
parent, up to mutations which occur with the same probability as before. One thus 
has the same equation (1) as before, but now, for each individual a, each unit i and 
each generation t, one chooses independently and with equal probability p = U ’  or 
p = a”. This model obviously neglects linkage, whereas the presence of mutations 
allows it to move away from simple Hardy-Weinberg equilibrium. 

Both models can be conveniently represented by stochastic equations. The effect 
of mutations can be represented by introducing, for each unit i, individual a and 
generation t, an independent random variable E:([), which takes the value + I  with 
probability f(l+e-”) and the value -1 with probability i(1 -e-’’). The state of unit 
( i ,  a )  at generation ( t +  1) is then given, in model A, by the expression 

’ 

UP(t+l)=E?(t)UP’(t) (2) 

where U’= G , ( a )  is the parent of individual a at generation ( t +  1). By the same token, 
one introduces in model B the independent random variables (9, which take the values 
0 or 1 with probability f .  One then has, in model B, 

UT(f + 1) = EP(f)[SP(t)US’(f)+(1+59(t))US”(f)l (3) 

where a’= G!”(a)  and a”= G;’)(a) are the two parents of individual a at generation 

As pointed out by DP, it is in general necessary to consider two different kinds of 
average: the population average, denoted by angular brackets ( ), and the process average, 

p may be represented by their overlap q”, defined by 

( t + l ) .  

dcn=tcd bj ba: . Fn: exa--p!e, the genetic $il!?i!zrity betFe.!? !WO i!?dividua!o Q and 
- 
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Therefore, the genetic similarity of the population as a whole may be represented by 
the population average Q = ( q )  of the overlap: 

where the sum runs over all different pairs of individuals in the population. (We remark 
that this definition differs slightly from that introduced in DP). However, Q fluctuates 
in general from generation to generation. One thus introduces its process average Q, 
whose value can be calculated as follows. In model A one has, from (2) and for a f /3, 

(6)  

Now up'(f)u?'(f) is equal to 1 if a'=p' (which happens with probability 1/M) and 
to Q ( f )  otherwise, because of the equivalence of all units i and pairs of individuals 
(0,  /3). We obtain therefore 

uq(t+ ljuf(t+ I ) =  &p(t )EQ(t )up' ( t )u?' ( t )  =e-411 uf'(t)uf'(t). 

- 

-- 
and in the steady state where Q( f + 1) = Q( 1 )  = 0, 

= M(e4* - 1) + 1 ' 
- 1 

Let us now turn to model B and equation (3). We have 

1 
4 

up( t+ ] ) U ? (  t + 1) =e-'*- [up'(t)+up"( rj][u?'(t) + uy"(t)] 

= ! [A+ 4 (1 - +) m] . 4 M  (9) 

We obtain therefore the same equation (7) and the same steady-state result (8) as in 
model A. These results become simpler in the limit m + 00, pM =constant, considered 
by DP. One has in fact 0 = A / (  1 + A ) ,  where 

1 A =- 
4 p M '  

Although the average variability of the two models is the same, the corresponding 
fluctuations are different. To proceed further, it is useful to take, along with the 
infinite-population limit defined above, the infinite-genome limit (Kimura 1983), N + 
m. One thus obtains: 

~ 

A = 0 = = ( ~ p g p  (11) 

(12) 
B = (4 2 ) = q p u ? u E I g P  

(13) C = Q  2 =(q)2=upupuyu;P. 

These relations hold up to terms of order 1 f M and I /  N, and it is understood that 
different Latin indices refer to different genome units, and likewise different Greek 
indices refer to different individuals. In addition to the quantities defined above, it is 
useful to introduce the quantity D, defined by 

J I  _ _  
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We can now compute the fluctations of the overlap. In model A, by means of (2). 
we obtain: 

The four individuals a', p ' ,  y'. 8' are all different with probability equal to (M - 1) x 
(M-2)(M-3)/M3-1-(6/M).With probability 2/M one has a ' = p ' o r  y'=S'and 
with probability 4/M one has a ' = y '  or U ' = #  or p '=y'  or p'=S'. Other possible 
combinations yield contributions of order 1/ M 2 ,  which are negligible. This implies 
the following steady-state equation: 

2 
M M  

C = e-'* [ (1 -$) C+- A +- D 

One also analogously obtains: 

These expressions imply, beyond (8). 

A2(9A2+ 18A+4) 
( A  + l)(A +2)(3A+ 1)(3A+2) 

C =  

5A2+3A3 
( A +  l ) ( A  +2)(3A +2)' 

D =  

These results confirm the expression of the fluctuations of Q derived by DP. 

Turning now to model B, we have, neglecting terms of order 1/ M 2 :  

B(t+l)=u~(t+l)u~(1+1)u~(t+l)u~(t+l) 

1 e-8" 4 
16 M = - [ 4 (1  - :) ( B  + C + 2 0 )  +- (1 + 6A + 3 8  + 6 0 )  . 

The quantities on the last line are evaluated at generation 1. Here, in contrast with 
(17), the leading terms are of order one, instead of order 1/M. It is sufficient therefore 
to consider just the case in which all four parents are different. Neglecting terms of 
order 1/ M, we obtain in the DP limit the following steady-state equation: 

3B= C+2D. (21) 

In an analogous way the following equations for C and D can be derived: 
2 

M M  C =e-'* [ (1  -$) C+- 
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The last equation implies, in the DP limit, D = C, which, together with equation (21), 
implies B = C. Replacing these values in equation (22) we obtain B = C = D = A'= 
l/(l+l/A)'. leading to 

(24) 

This surprising result implies that, in the infinite-population limit, the situation is very 
different from the one holding in the asexual reproduction case. There, the overlap 
was distributed in the population according to the wider or closer relatedness of two 
individuals-yielding a non-trivial overlap distribution P(q)-and moreover this distri- 
bution itself did fluctuate from generation to  generation. Here, the average overlap Q 
does not fluctuate, and, more strikingly, the relative overlap of any two individuals is 
equal to the average with probability one. This is due to the fact that the ancestors (I 
generations ago) of each individual sample, whenever 1 exceeds a few times log,M, 
the whole population over and over again, effectively reducing the fluctuations. 

On the other hand, the average properties of the two models coincide. Beyond the 
average overlap Q, it is indeed also possible to evaluate the effective mutation rate p*, 
defined by the behaviour of the correlation function 

- _  
WZ = (9')  = m. 

By taking the process average of (3) it is easy to see that 

yielding 

as in DP, confirming a famous result of .JCimura (1983). 
We have thus shown that, although the average properties of model B (with sexual 

reproduction mechanism) are equal to those of model A, its fluctuations are radically 
different, and are negligible in the infinite-population limit. This vindicates the relevance 
of fluctuations in small populations as the source of evolutionary innovation. 

Note added. B Demida and P Higgs (private communication) have recently considered a madcl similar to 
ours. reaching the same results. However, if it is assumed that the coupling between individuals CI and 0 
is only fecund if the overlap 9-O is larger than a threshold qo, they find that the probability distribution 
p ( q )  oftheaverlap bemmcsnan-trivial whenever q,exceedsll( I + A ) .  Indeed,inthissituationthepopulation 
breaks up in mutually unfecund sub-populations (species), whose size fluctuates rapidly as time goes on. 
It appears that in this language, speciation is manifested by the appearance of a non-trivial Parisi order 
parameter, i.e. by a spin-glass phase transition. 
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